Какое уравнение называют уравнением следствием. Равносильные уравнения


Класс: 11

Продолжительность: 2 урока.

Цель урока:

  • (для учителя) формирование у учащихся целостного представления о методах решения иррациональных уравнений.
  • (для учащихся) Развитие умения наблюдать, сравнивать, обобщать, анализировать математические ситуации (слайд 2). Подготовка к ЕГЭ.

План первого урока (слайд 3)

  1. Актуализация знаний
  2. Разбор теории: Возведение уравнения в чётную степень
  3. Практикум по решению уравнений

План второго урока

  1. Дифференцированная самостоятельная работа по группам «Иррациональные уравнения на ЕГЭ»
  2. Итог уроков
  3. Домашнее задание

Ход уроков

I. Актуализация знаний

Цель: повторить понятия, необходимые для успешного освоения темы урока.

Фронтальный опрос.

– Какие два уравнения называются равносильными?

– Какие преобразования уравнения называют равносильными?

– Данное уравнение заменить равносильным с пояснением применённого преобразования: (слайд 4)

а) х+ 2х +1; б) 5 = 5; в) 12х = -3; г) х = 32; д) = -4.

– Какое уравнение называют уравнением-следствием исходного уравнения?

– Может ли уравнение-следствие иметь корень, не являющийся корнем исходного уравнения? Как называются эти корни?

– Какие преобразования уравнения приводят к уравнениям-следствиям?

– Что называется арифметическим квадратным корнем?

Остановимся сегодня более подробно на преобразовании «Возведение уравнения в чётную степень».

II. Разбор теории: Возведение уравнения в чётную степень

Объяснение учителя при активном участии учащихся:

Пусть 2 m (m N) – фиксированное чётное натуральное число. Тогда следствием уравнения f(x) = g(x) является уравнение (f(x)) = (g(x)).

Очень часто это утверждение применяется при решении иррациональных уравнений.

Определение. Уравнение, содержащее неизвестное под знаком корня, называется иррациональным.

При решении иррациональных уравнений используют следующие методы: (слайд 5)

Внимание! Методы 2 и 3 требуют обязательной проверки.

ОДЗ не всегда помогает устранить посторонние корни.

Вывод: при решении иррациональных уравнений важно пройти три этапа: технический, анализ решения, проверка(слайд 6).

III. Практикум по решению уравнений

Решить уравнение:

После обсуждения способа решения уравнения возведением в квадрат, решить переходом к равносильной системе.

Вывод : решение простейших уравнений с целыми корнями можно провести любым знакомым методом.

б) = х – 2

Решая методом возведения обеих частей уравнения в одну и ту же степень, учащиеся получают корни х = 0, х= 3 - , х= 3 + , проверить которые подстановкой сложно и трудоёмко. (Слайд 7). Переход к равносильной системе

позволяет быстро избавиться от посторонних корней. Условию х ≥ 2 удовлетворяет только х.

Ответ: 3 +

Вывод : иррациональные корни проверять лучше переходом к равносильной системе.

в) = х – 3

В процессе решения этого уравнения получаем два корня: 1 и 4. Оба корня удовлетворяют левой части уравнения, но при х = 1 нарушается определение арифметического квадратного корня. ОДЗ уравнения не помогает устранить посторонние корни. Переход к равносильной системе даёт правильный ответ.

Вывод: хорошее знание и понимание всех условий определения арифметического квадратного корня помогает перейти к выполнению равносильных преобразований.

Возведя обе части уравнения в квадрат, получим уравнение

х + 13 - 8 + 16 = 3 + 2х - х, уединив радикал в правую часть, получаем

26 – х + х = 8. Применение дальнейших действий по возведению в квадрат обеих частей уравнения, приведёт к уравнению 4-й степени. Переход к ОДЗ уравнения даёт хороший результат:

найдём ОДЗ уравнения:

х = 3.

Проверка: - 4 = , 0 = 0 верно.

Вывод: иногда возможно провести решение с помощью определения ОДЗ уравнения , но обязательно сделать проверку.

Решение: ОДЗ уравнения: -2 – х ≥ 0 х ≤ -2.

При х ≤ -2, < 0, а ≥ 0.

Следовательно, левая часть уравнения отрицательна, а правая – неотрицательна; поэтому исходное уравнение корней не имеет.

Ответ: корней нет.

Вывод: сделав правильные рассуждения по ограничению в условии уравнения, можно без труда найти корни уравнения, или установить, что их нет.

На примере решения этого уравнения показать двукратное возведение уравнения в квадрат, объяснить смысл фразы «уединение радикалов» и необходимость проверки найденных корней.

з) + = 1.

Решение этих уравнения провести методом замены переменной до момента возвращения к исходной переменной. Закончить решение предложить тем, кто раньше справится с заданиями следующего этапа.

Контрольные вопросы

  • Как решать простейшие иррациональные уравнения?
  • Что необходимо помнить при возведении уравнения в чётную степень? (могут появиться посторонние корни)
  • Как лучше проверять иррациональные корни? (с помощью ОДЗ и условий совпадения знаков обеих частей уравнения)
  • Для чего необходимо уметь анализировать математические ситуации при решении иррациональных уравнений? (Для правильного и быстрого выбора способа решения уравнения).

IV. Дифференцированная самостоятельная работа по группам «Иррациональные уравнения на ЕГЭ»

Класс разбивается на группы (по 2-3 человека) по уровням обученности, каждая группа выбирает себе вариант с заданием, обсуждает и решает выбранные задания. По мере необходимости обращается к учителю за консультацией. После выполнения всех заданий своего варианта и проверки ответов учителем, участники группы индивидуально заканчивают решение уравнений ж) и з) предыдущего этапа урока. Для 4 и 5 вариантов (после проверки ответов и решения учителем) на доске записаны дополнительные задания, которые выполняются индивидуально.

Все индивидуальные решения в конце уроков сдаются учителю на проверку.

Вариант 1

Решите уравнения:

а) = 6;
б) = 2;
в) = 2 – х;
г) (х + 1) (5 – х) (+ 2 = 4.

Вариант 5

1. Решите уравнение:

а) = ;
б) = 3 – 2х;

2. Решить систему уравнений:

Дополнительные задания:

V. Итог уроков

Какие трудности испытывали при выполнении заданий ЕГЭ? Что необходимо для устранения этих трудностей?

VI. Домашнее задание

Повторить теорию решения иррациональных уравнений, прочитать пункт 8.2 в учебнике (обратить внимание на пример 3).

Решить № 8.8 (а, в), № 8.9 (а, в), № 8.10 (а).

Литература:

  1. Никольский С.М., Потапов М.К., Н.Н. Решетников Н.Н., Шевкин А.В. Алгебра и начала математического анализа, учебник для 11 класса общеобразовательных учреждений, М.: Просвещение, 2009.
  2. Мордкович А.Г. О некоторых методических вопросах, связанных с решением уравнений. Математика в школе. -2006. -№3.
  3. М. Шабунин. Уравнения. Лекции для старшеклассников и абитуриентов. Москва, «Чистые пруды», 2005. (библиотечка «Первое сентября»)
  4. Э.Н. Балаян. Практикум по решению задач. Иррациональные уравнения, неравенства и системы. Ростов-на-Дону, «Феникс», 2006.
  5. Математика. Подготовка к ЕГЭ-2011. Под редакцией Ф.Ф. Лысенко, С.Ю. Кулабухова Легион-М, Ростов-на-Дону, 2010.

В презентации продолжим рассмотрение равносильных уравнений, теорем, остановимся более подробно на этапах решения таких уравнений.

Для начала вспомним условие, при котором одно из уравнений является следствием другого (слайд 1). Автор приводит еще раз некоторые теоремы о равносильных уравнениях, которые были рассмотрены ранее: об умножении частей уравнения на одинаковое значение h (x); возведение частей уравнения в одинаковую четную степень; получение равносильного уравнения из уравнения log a f(x) = log a g (x).

На 5-м слайде презентации выделены основные этапы, с помощью которых удобно решать равносильные уравнения:

Найти решения равносильного уравнения;

Проанализировать решения;

Проверить.


Рассмотрим пример 1. Необходимо найти следствие уравнения x - 3 = 2. Найдем корень уравнения x = 5. Запишем равносильное уравнение (x - 3)(x - 6) = 2(x - 6), применив способ умножения частей уравнения на (x - 6). Упростив выражение до вида x 2 - 11x +30 = 0, найдем корни x 1 = 5, x 2 = 6. Т.к. каждый корень уравнения x - 3 = 2 является также решением уравнения x 2 - 11x +30 = 0, то x 2 - 11x +30 = 0 - это уравнение-следствие.


Пример 2. Найти другое следствие уравнения x - 3 = 2. Для получения равносильного уравнения используем метод возведения в четную степень. Упростив полученное выражение, запишем x 2 - 6x +5 = 0. Найдем корни уравнения x 1 = 5, x 2 = 1. Т.к. x = 5 (корень уравнения x - 3 = 2) является также решением уравнения x 2 - 6x +5 = 0, то уравнение x 2 - 6x +5 = 0 также является уравнением-следствием.


Пример 3. Необходимо найти следствие уравнения log 3 (x + 1) + log 3 (x + 3) = 1.

Заменим в уравнении 1 = log 3 3. Тогда, применяя утверждение из теоремы 6, запишем равносильное уравнение (x + 1)(x +3) = 3. Упростив выражение, получим x 2 + 4x = 0, где корнями будут x 1 = 0, x 2 = - 4. Значит уравнение x 2 + 4x = 0 - следствие для заданного уравнения log 3 (x + 1) + log 3 (x + 3) = 1.


Итак, можно сделать вывод: если расширяется область определения уравнения, то получается уравнение-следствие. Выделим стандартные действия при нахождении уравнения-следствия:

Избавление от знаменателей, которые содержат переменную;

Возведение частей уравнения в одинаковую четную степень;

Освобождение от логарифмических знаков.

Но важно запомнить: когда в ходе решения расширяется область определения уравнения, то необходимо проверить всех найденные корни - будут ли они попадать в ОДЗ.


Пример 4. Решить уравнение, представленное на слайде 12. Вначале найдем корни равносильного уравнения x 1 = 5, x 2 = - 2 (первый этап). Необходимо обязательно проверить корни (второй этап). Проверка корней (третий этап): x 1 = 5 не принадлежит области допустимых значений заданного уравнения, поэтому уравнение имеет одно решение только x = - 2.


В примере 5 найденный корень равносильного уравнения не входит в ОДЗ заданного уравнения. В примере 6 значение одного из двух найденных корней не определено, поэтому этот корень не является решением исходного уравнения.

Муниципальное общеобразовательное учреждение

«Новоуколовская средняя общеобразовательная школа»

Красненского района Белгородской области

Урок алгебры в 11 классе

«Применение нескольких преобразований, приводящих к уравнению-следствию»

Подготовила и провела

Учитель математики

Харьковская Валентина Григорьевна

Алгебра 11 класс

Тема: Применение нескольких преобразований, приводящих к уравнению – следствию.

Цель: создать условия для закрепления материала по теме: «Применение нескольких преобразований, приводящих к уравнению – следствию»; р азвивать самостоятельность, воспитывать грамотность речи ; формировать вычислительные навыки обучающихся; выполнить задания соответствующие уровню ЕГЭ.

Оборудование: учебник, компьютер, карточки

Тип урока: урок комплексного применения ЗУН

Ход урока

    Оргмомент (Слайд 1)

Добрый день, ребята! Посмотрите на эти картинки, и выберите, какая из них вам понравилась больше всего. Я вижу, что вы как и я, пришли на урок с хорошим настроением, и думаю, оно останется таким же до конца урока. Хочу пожелать вам плодотворной работы.

Ребята, у каждого из вас на столе лежат оценочные листы, в которых вы будете оценивать себя на каждом этапе урока

    Проверка домашнего задания.(Слайд 2)

Высветить на слайде решения и дети выставляют себе оценки в

листок самоконтроля. Нет ошибок – «5», если 1 ошибка – «4», 2

ошибки – «3». Если получится много детей, у которых имеются 2

ошибки, то это задание прорешать у доски.

Объявление темы урока (Слайд 3). постановка целей урока

Тему нашего урока вы видите на слайде. Как вы думаете, чем

мы будем с вами сегодня заниматься на уроке?

Ну, что же, ребята, давайте вспомним пройденный материал .

Начнем с устной работы :

    Устная работа (Слайд 4)

    Какие уравнения называют уравнениями-следствиями? (если любой корень первого уравнения является корнем второго, то второе уравнение называют следствием первого);

    Что называют переходом к уравнению-следствию? (замену уравнения другим уравнением, которое является его следствием);

    Какие преобразования приводят к уравнению-следствию? Приведите примеры. (возведение уравнения в четную степень; потенцирование логарифмического уравнения; освобождение уравнения от знаменателя; приведение подобных членов уравнения; применение формул).

Решите уравнения (Слайд 5)

(уравнения высвечиваются на экране):

1) = 6; (ответ: 36)

2) = 3; (ответ: 11)

3) = 4; (ответ: 6)

4) = - 2; (ответ: нет решений, так как левая часть уравнения принимает только неотрицательные значения)

5) = 9; (ответ: -9 и 9)

6) = -2; (ответ: нет решений, так как сумма двух

неотрицательных чисел не может быть отрицательной)

Ребята, я думаю, вы заметили, что при выполнении домашнего задания и устной работы мы с вами встретили задания, соответствующие демоверсии, спецификации и кодификатору ЕГЭ.

4.Выполнение заданий

Ребята, давайте поработаем в тетрадях:

8.26 (а) – у доски

8.14 (в) – у доски

Физминутка для глаз (музыка)

8.8 (в)-у доски

8.9-(е)-у доски

5.Самостоятельная работа (Слайд 6)

Решение самостоятельной работы (Слайд 7)

6. Домашнее задание: выполнить №8.14 (г), задание ЕГЭ В5 в вариантах 21,23,25 (Слайд 8)

7.Итоги урока (Слайд 9)

8.Рефлексия (Слайд 10)

Анкета.

1. На уроке я работал

2. Своей работой на уроке я

3. Урок для меня показался

4. За урок я

5. Мое настроение

6. Материал урока мне был

7. Как вы думаете, справитесь на экзамене с такими заданиями?

8. Домашнее задание мне кажется

активно / пассивно

доволен / не доволен

коротким / длинным

не устал / устал

стало лучше / стало хуже

понятен / не понятен

полезен / бесполезен

интересен / скучен

да/нет/не знаю

легким / трудным

интересным / неинтересным

Использованные ресурсы:

    Никольский С.М., Потапов К.М., . Алгебра и начала математического анализа, 11 класс М.: Просвещение, 2010

    Сборник заданий для подготовки к ЕГЭ по математике

Может привести к появлению так называемых посторонних корней. В этой статье мы, во-первых, детально разберем, что такое посторонние корни . Во-вторых, поговорим о причинах их возникновения. И в-третьих, на примерах рассмотрим основные способы отсеивания посторонних корней, то есть, проверки корней на предмет наличия среди них посторонних с целью исключения их из ответа.

Посторонние корни уравнения, определение, примеры

В школьных учебниках по алгебре не дается определение постороннего корня. Там представление о постороннем корне формируется путем описания следующей ситуации: при помощи некоторых преобразований уравнения осуществляется переход от исходного уравнения к уравнению-следствию, находятся корни полученного уравнения-следствия, и осуществляется проверка найденных корней подстановкой в исходное уравнение, которая показывает, что некоторые из найденных корней не являются корнями исходного уравнения, эти корни называют посторонними корнями для исходного уравнения .

Отталкиваясь от этой базы, для себя можно принять такое определение постороннего корня:

Определение

Посторонние корни – это корни полученного в результате проведения преобразований уравнения-следствия, не являющиеся корнями исходного уравнения.

Приведем пример. Рассмотрим уравнение и следствие этого уравнения x·(x−1)=0 , полученное в результате замены выражения тождественно равным ему выражением x·(x−1) . Исходное уравнение имеет единственный корень 1 . Уравнение, полученное в результате проведения преобразования, имеет два корня 0 и 1 . Значит 0 – это посторонний корень для исходного уравнения.

Причины возможного появления посторонних корней

Если для получения уравнения-следствия не использовать никакие «экзотические» преобразования, а использовать только основные преобразования уравнений , то посторонние корни могут возникнуть лишь по двум причинам:

  • из-за расширения ОДЗ и
  • из-за возведения обеих частей уравнения в одну и ту же четную степень.

Здесь стоит напомнить, что расширение ОДЗ в результате преобразования уравнения в основном происходит

  • При сокращении дробей;
  • При замене нулем произведения с одним или несколькими нулевыми множителями;
  • При замене нулем дроби с нулевым числителем;
  • При использовании некоторых свойств степеней, корней, логарифмов;
  • При использовании некоторых тригонометрических формул;
  • При умножении обеих частей уравнения на одно и то же выражение, обращающееся в нуль на ОДЗ для этого уравнения;
  • При освобождении в процессе решения от знаков логарифмов.

Пример из предыдущего пункта статьи иллюстрирует появление постороннего корня из-за расширения ОДЗ, которое имеет место при переходе от уравнения к уравнению-следствию x·(x−1)=0 . ОДЗ для исходного уравнения есть множество всех действительных чисел, за исключением нуля, ОДЗ для полученного уравнения есть множество R, то есть, ОДЗ расширяется числом нуль. Это число в итоге и оказывается посторонним корнем.

Также приведем пример появления постороннего корня из-за возведения обеих частей уравнения в одну и ту же четную степень. Иррациональное уравнение имеет единственный корень 4 , а следствие этого уравнения, полученное из него путем возведения обеих частей уравнения в квадрат, то есть, уравнение , имеет два корня 1 и 4 . Из этого видно, что возведение обеих частей уравнения в квадрат привело к появлению постороннего корня для исходного уравнения.

Заметим, что расширение ОДЗ и возведение обеих частей уравнения в одну и ту же четную степень, не всегда приводит к появлению посторонних корней. Например, при переходе от уравнения к уравнению-следствию x=2 ОДЗ расширяется с множества всех неотрицательных чисел до множества всех действительных чисел, но посторонние корни не появляются. 2 – это единственный корень как первого, так и второго уравнения. Также не происходит появления посторонних корней при переходе от уравнения к уравнению-следствию . Единственным корнем и первого, и второго уравнения является x=16 . Именно поэтому мы говорим не о причинах появления посторонних корней, а о причинах возможного появления посторонних корней.

Что такое отсеивание посторонних корней?

Термин «отсеивание посторонних корней» лишь с натяжкой можно назвать устоявшимся, он встречается далеко не во всех учебниках алгебры, но является интуитивно понятным, из-за чего обычно и используется. Что понимают под отсеиванием посторонних корней, становится понятно из следующей фразы: «… проверка – обязательный этап решения уравнения, который поможет обнаружить посторонние корни, если они есть, и отбросить их (обычно говорят «отсеять»)» .

Таким образом,

Определение

Отсеивание посторонних корней – это обнаружение и отбрасывание посторонних корней.

Теперь можно переходить к способам отсеивания посторонних корней.

Способы отсеивания посторонних корней

Проверка подстановкой

Основной способ отсеивания посторонних корней – это проверка подстановкой. Он позволяет отсеять посторонние корни, которые могли возникнуть и по причине расширения ОДЗ, и по причине возведения обеих частей уравнения в одну и ту же четную степень.

Проверка подстановкой состоит в следующем: найденные корни уравнения-следствия по очереди подставляются в исходное уравнение или в любое равносильное ему уравнение, те из них, которые дают верное числовое равенство, являются корнями исходного уравнения, а те, которые дают неверное числовое равенство или выражение, не имеющее смысла, являются посторонними корнями для исходного уравнения.

Покажем на примере, как проводится отсеивание посторонних корней через подстановку в исходное уравнение.

В некоторых случаях отсеивание посторонних корней целесообразнее проводить другими способами. Это относится в основном к тем случаям, когда проверка подстановкой связана со значительными вычислительными трудностями или когда стандартный способ решения уравнений какого-то определенного вида предполагает другой проверки (например, отсеивание посторонних корней при решении дробно-рациональных уравнений проводится по условию не равенства нулю знаменателя дроби). Разберем альтернативные способы отсеивания посторонних корней.

По ОДЗ

В отличие от проверки подстановкой, отсеивание посторонних корней по ОДЗ уместно не всегда. Дело в том, что этот способ позволяет отсеивать лишь посторонние корни, возникающие по причине расширения ОДЗ, и он не гарантирует отсеивание посторонних корней, которые могли возникнуть по другим причинам, например, из-за возведения обеих частей уравнения в одну и ту же четную степень. Более того, не всегда просто отыскать ОДЗ для решаемого уравнения. Тем не менее, способ отсеивания посторонних корней по ОДЗ стоит держать на вооружении, так как часто его использование требует меньших вычислительных работ, чем использование других способов.

Отсеивание посторонних корней по ОДЗ проводится следующим образом: все найденные корни уравнения-следствия проверяются на предмет принадлежности области допустимых значений переменной для исходного уравнения или любого равносильного ему уравнения, те из них, которые принадлежат ОДЗ, являются корнями исходного уравнения, а те из них, которые не принадлежат ОДЗ, являются посторонними корнями для исходного уравнения.

Анализ приведенной информации приводит к выводу, что отсеивание посторонних корней по ОДЗ целесообразно проводить, если единовременно:

  • легко находится ОДЗ для исходного уравнения,
  • посторонние корни могли возникнуть только по причине расширения ОДЗ,
  • проверка подстановкой связана со значительными вычислительными сложностями.

Покажем, как проводится отсеивание посторонних корней, на практике.

По условиям ОДЗ

Как мы сказали в предыдущем пункте, если посторонние корни могли возникнуть лишь по причине расширения ОДЗ, то их можно отсеять по ОДЗ для исходного уравнения. Но не всегда просто найти ОДЗ в виде числового множества. В таких случаях можно проводить отсеивание посторонних корней не по ОДЗ, а по условиям, определяющим ОДЗ. Разъясним, как проводится отсеивание посторонних корней по условиям ОДЗ.

Найденные корни по очереди подставляются в условия, определяющие ОДЗ для исходного уравнения или любого равносильного ему уравнения. Те из них, которые удовлетворяют всем условиям, являются корнями уравнения. А те из них, которые не удовлетворяют хотя бы одному условию или дают не имеющее смысла выражение, являются посторонними корнями для исходного уравнения.

Приведем пример отсеивания посторонних корней по условиям ОДЗ.

Отсеивание посторонних корней, возникающих из-за возведения обеих частей уравнения в четную степень

Понятно, что отсеивание посторонних корней, возникающих из-за возведения обеих частей уравнения в одну и ту же четную степень, можно осуществить путем подстановки в исходное уравнение или в любое равносильное ему уравнение. Но такая проверка может быть связана со значительными вычислительными трудностями. На этот случай стоит знать альтернативный способ отсеивания посторонних корней, о котором мы сейчас и поговорим.

Отсеивание посторонних корней, которые могут возникнуть при возведении в одну и ту же четную степень обеих частей иррациональных уравнений вида , где n – некоторое четное число, можно проводить по условию g(x)≥0 . Это вытекает из определения корня четной степени: корень четной степени n есть неотрицательное число, n -ая степень которого равна подкоренному числу, откуда . Таким образом, озвученный подход представляет собой своего рода симбиоз метода возведения обеих частей уравнения в одну и ту же степень и метода решения иррациональных уравнений по определению корня. То есть, уравнение , где n –четное число, решается методом возведения обеих частей уравнения в одну и ту же четную степень, а отсеивание посторонних корней выполняется по условию g(x)≥0 , взятому из метода решения иррациональных уравнений по определению корня.

Пусть даны два уравнения

Если каждый корень уравнения (2.1) является одновременно и корнем уравнения (2.2), то уравнение (2.2) называется следствием уравнения (2.1). Заметим, что равносильность уравнений означает, что каждое из уравнений является следствием другого.

В процессе решения уравнения часто приходится применять такие преобразования, которые приводят к уравнению, являющемуся следствием исходного. Уравнению-следствию удовлетворяют все корни исходного уравнения, но, кроме них, уравнение-следствие может иметь и такие решения, которые не являются корнями исходного уравнения, это так называемые посторонние корни. Чтобы выявить и отсеять посторонние корни, обычно поступают так: все найденные корни уравнения-следствия проверяют подстановкой в исходное уравнение.

Если при решении уравнения мы заменили его уравнением-следствием, то указанная выше проверка является неотъемлемой частью решения уравнения. Поэтому важно знать, при каких преобразованиях данное уравнение переходит в следствие.

Рассмотрим уравнение

и умножим обе его части на одно и то же выражение ,имеющее смысл при всех значениях . Получим уравнение

корнями которого служат как корни уравнения (2.3), так и корни уравнения . Значит, уравнение (2.4) есть следствие уравнения (2.3). Ясно, что уравнения (2.3) и (2.4) равносильны, если «постороннее» уравнение не имеет корней.

Итак, если обе части уравнения умножить на выражение , имеющее смысл при любых значениях , то получится уравнение, являющееся следствием исходного. Полученное уравнение будет равносильно исходному, если уравнение не имеет корней. Заметим, что обратное преобразование, т.е. переход от уравнения (2.4) к уравнению (2.3) путем деления обеих частей уравнения (2.4) на выражение , как правило, недопустимо, поскольку может привести к потере решений (в этом случае могут «потеряться» корни уравнения ). Например, уравнение имеет два корня: 3 и 4. Деление же обеих частей уравнения на приводит к уравнению , имеющему только один корень 4, т.е. произошла потеря корня.

Снова возьмем уравнение (2.3) и возведем обе его части в квадрат. Получим уравнение

корнями которого служат как корни уравнения (2.3), так и корни «постороннего» уравнения , т.е. уравнение (2.5) – следствие уравнения (2.3).

Например, уравнение имеет корень 4. Если обе части этого уравнения возвести в квадрат, то получится уравнение , имеющее два корня: 4 и -2. Значит, уравнение - следствие уравнения . При переходе от уравнения к уравнению появился посторонний корень -2.

Итак, при возведении обеих частей уравнения в квадрат (и вообще в любую четную степень) получается уравнение, являющееся следствием исходного. Значит, при указанном преобразовании возможно появление посторонних корней. Заметим, что возведение обеих частей уравнения в одну и ту же нечетную степень приводит к уравнению, равносильному данному.