Равнобедренный треугольник. Подробная теория с примерами


Треугольник, у которого две стороны равны между собой, называется равнобедренным. Эти его стороны называют боковыми, а третью сторону называют основанием. В этой статье мы расскажем Вам о том, какие бывают свойства равнобедренного треугольника.

Теорема 1

Углы возле основания равнобедренного треугольника равны между собой

Доказательство теоремы.

Допустим, мы имеем равнобедренный треугольник ABC, основание которого AB. Давайте рассмотрим треугольник BAC. Эти треугольники, по первому признаку, равны между собой. Так и есть, ведь BC = AC, AC = BC, угол ACB = углу ACB. Отсюда вытекает, что угол BAC = углу ABC, ведь это соответствующие углы наших равных между собой треугольников. Вот Вам и свойство углов равнобедренного треугольника.

Теорема 2

Медиана в равнобедренном треугольнике, которую провели к его основанию, является также высотой и биссектрисой

Доказательство теоремы.

Допустим, мы имеем равнобедренный треугольник ABC, основание которого AB, а CD - это медиана, которую мы провели к его основанию. В треугольниках ACD и BCD угол CAD = углу CBD, как соответствующие углы при основании равнобедренного треугольника (Теореме 1). А сторона AC = стороне BC (по определению равнобедренного треугольника). Сторона AD = стороне BD, Ведь точка D делит отрезок AB на равные части. Отсюда выходит, что треугольник ACD = треугольнику BCD.

Из равенства этих треугольников мы имеем равенство соответствующих углов. То есть угол ACD = углу BCD и угол ADC = углу BDC. Из равенства 1 выходит, что CD - это биссектриса. А угол ADC и угол BDC - смежные углы, и из равенства 2 выходит, что они оба прямые. Получается, что CD - это высота треугольника. Это и есть свойство медианы равнобедренного треугольника.

А теперь немного о признаках равнобедренного треугольника.

Теорема 3

Если в треугольнике два угла равны между собой, то такой треугольник равнобедренный

Доказательство теоремы.

Допустим, мы имеем треугольник ABC, в котором угол CAB = углу CBA. Треугольник ABC = треугольнику BAC по второму признаку равенства между треугольниками. Так и есть, ведь AB = BA; угол CBA = углу CAB, угол CAB = углу CBA. Из такого равенства треугольников мы имеем равенство соответствующих сторон треугольника - AC = BC. Тогда выходит, что треугольник ABC равнобедренный.

Теорема 4

Если в любом треугольнике его медиана является также и его высотой, то такой треугольник равнобедренный

Доказательство теоремы.

В треугольнике ABC мы проведем медиану CD. Она также будет являться и высотой. Прямоугольный треугольник ACD = прямоугольному треугольнику BCD, так как катет CD общий для них, а катет AD = катету BD. С этого следует, что их гипотенузы равны между собой, как соответственные части равных треугольников. Это значит, что AB = BC.

Теорема 5

Если три стороны треугольника равны трем сторонам другого треугольника, то эти треугольники равны

Доказательство теоремы.

Допустим, мы имеем треугольник ABC и треугольник A1B1C1 такие, в которых стороны AB = A1B1, AC = A1C1, BC = B1C1. Рассмотрим доказательство этой теоремы от противного.

Допустим, что эти треугольники не равны между собой. Отсюда имеем, что угол BAC не равен углу B1A1C1, угол ABC не равен углу A1B1C1, угол ACB не равен углу A1C1B1 одновременно. В противном случае, эти треугольники были бы равны по вышерассмотренному признаку.

Допустим, что треугольник A1B1C2 = треугольнику ABC. У треугольника вершина C2 лежит с вершиной C1 относительно прямой A1B1 в одной полуплоскости. Мы предположили, что вершины C2 и C1 не совпадают. Допустим, что точка D - это середина отрезка C1C2. Так мы имеем равнобедренные треугольники B1C1C2 и A1C1C2, у которых есть общее основание C1C2. Выходит, что их медианы B1D и A1D - это также и их высоты. А это значит, что прямая B1D и прямая A1D перпендикулярны прямой C1C2.

B1D и A1D имеют разные точки B1 и A1, и соответственно, не могут совпадать. Но ведь через точку D прямой C1C2 мы можем провести всего одну перпендикулярную ей прямую. У нас получилось противоречие.

Теперь Вы знаете, какие бывают свойства равнобедренного треугольника!

Геометрия - это не только предмет в школе, по которому нужно получить отличную оценку. Это еще и знания, которые часто требуются в жизни. Например, при строительстве дома с высокой крышей необходимо рассчитать толщину бревен и их количество. Это несложно, если знать, как находить высоту в равнобедренном треугольнике. Архитектурные сооружения базируются на знании свойств геометрических фигур. Формы зданий зачастую визуально напоминают их. Египетские пирамиды, пакеты с молоком, художественная вышивка, северные росписи и даже пирожки - это все треугольники, окружающие человека. Как говорил Платон, весь мир базируется на треугольниках.

Равнобедренный треугольник

Треугольник является равнобедренным, если он имеет две равных стороны. Их всегда называют боковыми. Сторона, размеры которой отличаются, получила название основания.

Основные понятия

Как и любая наука, геометрия имеет свои основные правила и понятия. Их достаточно много. Рассмотрим лишь те, без которых наша тема будет несколько непонятна.

Высота - это прямая линия, проведенная перпендикулярно к противоположной стороне.

Медиана - это отрезок, направленный из любой вершины треугольника исключительно к середине противоположной стороны.

Биссектриса угла - это луч, разделяющий угол пополам.

Биссектриса треугольника - это прямая, вернее, отрезок соединяющий вершину с противоположной стороной.

Очень важно запомнить, что биссектриса угла - это обязательно луч, а биссектриса треугольника - это часть такого луча.

Углы при основании

Теорема гласит, что углы, расположенные при основании любого равнобедренного треугольника, всегда равны. Доказать эту теорему очень просто. Рассмотрим изображенный равнобедренный треугольник АВС, у которого АВ=ВС. Из угла АВС необходимо провести биссектрису ВД. Теперь следует рассмотреть два полученных треугольника. По условию АВ=ВС, сторона ВД у треугольников общая, а углы АВД и СВД равны, ведь ВД - биссектриса. Вспомнив первый признак равенства, можно смело заключить, что рассматриваемые треугольники равны. А следовательно, равны все соответствующие углы. И, конечно, стороны, но к этому моменту вернемся позже.

Высота равнобедренного треугольника

Основная теорема, на которой базируется решение практически всех задач, звучит так: высота в равнобедренном треугольнике является биссектрисой и медианой. Чтобы понять её практический смысл (или суть), следует сделать вспомогательное пособие. Для этого необходимо вырезать из бумаги равнобедренный треугольник. Легче всего это сделать из обычного тетрадного листка в клеточку.

Согните полученный треугольник пополам, совместив боковые стороны. Что получилось? Два равных треугольника. Теперь следует проверить догадки. Разверните полученное оригами. Прочертите линию сгиба. При помощи транспортира проверьте угол между прочерченной линией и основанием треугольника. О чем говорит угол в 90 градусов? О том, что прочерченная линия - перпендикуляр. По определению - высота. Как находить высоту в равнобедренном треугольнике, мы разобрались. Теперь займемся углами при вершине. При помощи того же транспортира проверьте углы, образованные теперь уже высотой. Они равны. Значит, высота одновременно является и биссектрисой. Вооружившись линейкой, измерьте отрезки, на которые разбивает высота основание. Они равны. Следовательно, высота в равнобедренном треугольнике делит основание пополам и является медианой.

Доказательство теоремы

Наглядное пособие ярко демонстрирует истинность теоремы. Но геометрия - наука достаточно точная, поэтому требует доказательств.

Во время рассмотрения равенства углов при основании было доказано равенство треугольников. Напомним, ВД - биссектриса, а треугольники АВД и СВД равны. Вывод был таков: соответствующие стороны треугольника и, естественно, углы равны. Значит, АД = СД. Следовательно, ВД - медиана. Осталось доказать, что ВД является высотой. Исходя из равенства рассматриваемых треугольников, получается, что угол АДВ равен углу СДВ. Но эти два угла являются смежными, и, как известно, дают в сумме 180 градусов. Следовательно, чему они равны? Конечно, 90 градусам. Таким образом, ВД - это высота в равнобедренном треугольнике, проведенная к основанию. Что и требовалось доказать.

Основные признаки

  • Чтобы успешно решать задачи, следует запомнить основные признаки равнобедренных треугольников. Они как бы обратны теоремам.
  • Если в ходе решения задачи обнаруживается равенство двух углов, значит, вы имеете дело с равнобедренным треугольником.
  • Если удалось доказать, что медиана является одновременно и высотой треугольника, смело заключайте - треугольник равнобедренный.
  • Если биссектриса является и высотой, то, опираясь на основные признаки, треугольник относят к равнобедренным.
  • И, конечно, если медиана выступает и в роли высоты, то такой треугольник - равнобедренный.

Формула высоты 1

Однако для большинства задач требуется найти арифметическую величину высоты. Именно поэтому рассмотрим, как находить высоту в равнобедренном треугольнике.

Вернемся к представленной выше фигуре АВС, у которой а - боковые стороны, в - основание. ВД - высота этого треугольника, она имеет обозначение h.

Что представляет собой треугольник АВД? Так как ВД - высота, то треугольник АВД - прямоугольный, катет которого необходимо найти. Воспользовавшись формулой Пифагора, получаем:

АВ² = АД² + ВД²

Определив из выражения ВД и подставив принятые ранее обозначения, получим:

Н² = а² - (в/2)².

Необходимо извлечь корень:

Н = √а² - в²/4.

Если вынести из под знака корня ¼ , то формула будет иметь вид:

Н = ½ √4а² - в².

Так находится высота в равнобедренном треугольнике. Формула вытекает из теоремы Пифагора. Даже если забыть эту символическую запись, то, зная метод нахождения, всегда можно её вывести.

Формула высоты 2

Формула, описанная выше, является основной и чаще всего используется при решении большинства геометрических задач. Но она не единственная. Иногда в условии, вместо основания, дано значение угла. При таких данных как находить высоту в равнобедренном треугольнике? Для решения подобных задач целесообразно использовать другую формулу:

где Н - высота, направленная к основанию,

а - боковая сторона,

α - угол при основании.

Если в задаче дано значение угла при вершине, то высота в равнобедренном треугольнике находится следующим образом:

Н = а/cos (β/2),

где Н - высота, опущенная на основание,

β - угол при вершине,

а - боковая сторона.

Прямоугольный равнобедренный треугольник

Очень интересным свойством обладает треугольник, вершина которого равна 90 градусам. Рассмотрим АВС. Как и в предыдущих случаях, ВД - высота, направленная к основанию.

Углы при основании равны. Вычислить их большого труда не составит:

α = (180 - 90)/2.

Таким образом, углы, находящиеся при основании, всегда по 45 градусов. Теперь рассмотрим треугольник АДВ. Он также является прямоугольным. Найдем угол АВД. Путем несложных вычислений получаем 45 градусов. А, следовательно, этот треугольник не только прямоугольный, но и равнобедренный. Стороны АД и ВД являются боковыми сторонами и равны между собой.

Но сторона АД в то же время является половиной стороны АС. Получается, что высота в равнобедренном треугольнике равна половине основания, а если записать в виде формулы, то получим следующее выражение:

Следует не забывать, что данная формула является исключительно частным случаем, и может быть использована только для прямоугольных равнобедренных треугольников.

Золотые треугольники

Очень интересным является золотой треугольник. В этой фигуре отношение боковой стороны к основанию равняется величине, названной числом Фидия. Угол, расположенный при вершине - 36 градусов, при основании - 72 градуса. Этим треугольником восхищались пифагорейцы. Принципы золотого треугольника положены в основу множества бессмертных шедевров. Известная всем построена на пересечении равнобедренных треугольников. Для многих творений Леонардо да Винчи использовал принцип «золотого треугольника». Композиция «Джоконды» основана как раз на фигурах, которые создают собой правильный звездчатый пятиугольник.

Картина «Кубизм», одно из творений Пабло Пикассо, завораживает взгляд положенными в основу равнобедренными треугольниками.

Равнобедренный треугольник - это треугольник, в котором длины двух его сторон равны между собой.

Примечание . Из определения равнобедренного треугольника следует, что правильный треугольник также является равнобедренным. Однако, необходимо помнить, что обратное утверждение - неверно.

Свойства равнобедренного треугольника

Свойства, приведенные ниже, используются при решении задач. Поскольку они широко известны, то подразумевается, что они не нуждаются в пояснении. Поэтому в текстах задач ссылка на них опущена.
  • Углы равны между собой.
  • Биссектрисы, медианы и высоты , проведённые из углов, противолежащих равным сторонам треугольника, равны между собой.
  • Биссектриса, медиана и высота , проведенные к основанию, совпадают между собой.
  • Центры вписанной и описанной окружностей лежат на высоте, биссектрисе и медиане (они совпадают) проведенных к основанию.
  • Углы , противолежащие равным сторонам равнобедренного треугольника, всегда острые .

Стороны в равнобедренном треугольнике могут быть вычислены с помощью формул, выражающих их длину через другие стороны и углы, величина которых известна.

Боковая сторона равнобедренного треугольника равна частному от деления основания на двойной косинус угла при основании (Формула 1). Данное тождество может быть получено путем несложных преобразований из теоремы косинусов.

Основание равнобедренного треугольника равно произведению боковой стороны на квадратный корень из удвоенной разности единицы и косинуса угла при вершине (Формула 2)

Основание равнобедренного треугольника равно удвоенному произведению боковой стороны на синус половины угла при вершине. (Формула 3)

Основание равнобедренного треугольника равно удвоенному произведению боковой стороны на косинус угла при его основании (Формула 4).

Радиус вписанной окружности в равнобедренный треугольник

Обозначения в формулах, можно посмотреть на рисунке выше.

Радиус вписанной окружности для равнобедренного треугольника можно найти, исходя из величин основания и каждой стороны. (Формула 1)

Радиус вписанной окружности для равнобедренного треугольника можно определить,исходя из величин основания и высоты, проведенной к этому основанию (Формула 2)

Радиус вписанной в равнобедренный треугольник окружности можно также вычислить через длину боковой стороны и высоту, проведенную к основанию треугольника (Формула 3)

Знание величины угла между боковыми сторонами и длины основания также позволяет определить радиус вписанной окружности (Формула 4)

Аналогичная формула (5) позволяет определить радиус вписанной окружности через боковые стороны и угол между ними

Признаки равнобедренного треугольника

Треугольник, у которого присутствуют перечисленные ниже признаки, является равнобедренным .
  • Два угла треугольника равны
  • Высота совпадает с медианой
  • Высота совпадает с биссектрисой
  • Биссектриса совпадает с медианой
  • Две высоты равны
  • Две медианы равны
  • Две биссектрисы равны

Площадь равнобедренного треугольника

Площадь равнобедренного треугольника находится по следующим формулам:

,
где
a - длина одной из двух равных сторон треугольника
b - длина основания
α - величина одного из двух равных углов при основании

β - величина угла между равными сторонами треугольника и противолежащего его основанию.

Свойства равнобедренного треугольника выражают следующие теоремы.

Теорема 1. В равнобедренном треугольнике углы при основании равны.

Теорема 2. В равнобедренном треугольнике биссектриса, проведенная к основанию, является медианой и высотой.

Теорема 3. В равнобедренном треугольнике медиана, проведенная к основанию, является биссектрисой и высотой.

Теорема 4. В равнобедренном треугольнике высота, проведенная к основанию, является биссектрисой и медианой.

Докажем одну из них, например теорему 2.5.

Доказательство. Рассмотрим равнобедренный треугольник ABC с основанием ВС и докажем, что ∠ В = ∠ С. Пусть AD - биссектриса треугольника ABC (рис.1). Треугольники ABD и ACD равны по первому признаку равенства треугольников (АВ = АС по условию, AD - общая сторона, ∠ 1 = ∠ 2, так как AD - биссектриса). Из равенства этих треугольников следует, что ∠ В = ∠ С. Теорема доказана.

С использованием теоремы 1 устанавливается следующая теорема.

Теорема 5. Третий признак равенства треугольников. Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны (рис. 2).

Замечание. Предложения, установленные в примерах 1 и 2, выражают свойства серединного перпендикуляра к отрезку. Из этих предложений следует, что серединные перпендикуляры к сторонам треугольника пересекаются в одной точке .

Пример 1. Доказать, что точка плоскости, равноудаленная от концов отрезка, лежит на серединном перпендикуляре к этому отрезку.

Решение. Пусть точка М равноудалена от концов отрезка АВ (рис. 3), т. е. AM = ВМ.

Тогда Δ АМВ равнобедренный. Проведем через точку М и середину О отрезка АВ прямую р. Отрезок МО по построению есть медиана равнобедренного треугольника АМВ, а следовательно (теорема 3), и высота, т. е. прямая МО, есть серединный перпендикуляр к отрезку АВ.

Пример 2. Доказать, что каждая точка серединного перпендикуляра к отрезку равноудалена от его концов.

Решение. Пусть р - серединный перпендикуляр к отрезку АВ и точка О - середина отрезка АВ (см. рис. 3).

Рассмотрим произвольную точку М, лежащую на прямой р. Проведем отрезки AM и ВМ. Треугольники АОМ и ВОМ равны, так как у них углы при вершине О прямые, катет ОМ общий, а катет ОА равен катету ОВ по условию. Из равенства треугольников АОМ и ВОМ следует, что AM = ВМ.

Пример 3. В треугольнике ABC (см. рис. 4) АВ = 10 см, ВС = 9 см, АС = 7 см; в треугольнике DEF DE = 7 см, EF = 10 см, FD = 9 см.

Сравнить треугольники ABC и DEF. Найти соответственно равные углы.

Решение. Данные треугольники равны по третьему признаку. Соответственно равные углы: А и Е (лежат против равных сторон ВС и FD), В и F (лежат против равных сторон АС и DE), С и D (лежат против равных сторон АВ и EF).

Пример 4. На рисунке 5 АВ = DC, ВС = AD, ∠B = 100°.

Найти угол D.

Решение. Рассмотрим треугольники ABC и ADC. Они равны по третьему признаку (АВ = DC, ВС = AD по условию и сторона АС - общая). Из равенства этих треугольников следует, что ∠ В = ∠ D, но угол В равен 100°, значит, и угол D равен 100°.

Пример 5. В равнобедренном треугольнике ABC с основанием AC внешний угол при вершине C равен 123°. Найдите величину угла ABC . Ответ дайте в градусах.

Видео-решение.

На данном уроке будет рассмотрена тема «Равнобедренный треугольник и его свойства». Вы узнаете, как выглядят и чем характеризуются равнобедренный и равносторонний треугольники. Докажете теорему о равенстве углов при основании равнобедренного треугольника. Рассмотрите также теорему о биссектрисе (медиане и высоте), проведенной к основанию равнобедренного треугольника. В конце урока вы разберете две задачи с использованием определения и свойств равнобедренного треугольника.

Определение: Равнобедренным называется треугольник, у которого равны две стороны.

Рис. 1. Равнобедренный треугольник

АВ = АС - боковые стороны. ВС - основание.

Площадь равнобедренного треугольника равна половине произведения его основания на высоту.

Определение: Равносторонним называется треугольник, у которого все три стороны равны.

Рис. 2. Равносторонний треугольник

АВ = ВС = СА.

Теорема 1: В равнобедренном треугольнике углы при основании равны.

Дано: АВ = АС.

Доказать: ∠В =∠С.

Рис. 3. Чертеж к теореме

Доказательство: треугольник АВС = треугольнику АСВ по первому признаку (по двум равным сторонам и углу между ними). Из равенства треугольников следует равенство всех соответствующих элементов. Значит, ∠В = ∠С, что и требовалось доказать.

Теорема 2: В равнобедренном треугольнике биссектриса , проведенная к основанию, является медианой и высотой .

Дано: АВ = АС, ∠1 = ∠2.

Доказать: ВD = DC, AD перпендикулярно BC.

Рис. 4. Чертеж к теореме 2

Доказательство: треугольник ADB = треугольнику ADC по первому признаку (AD - общая, АВ = АС по условию, ∠BAD = ∠DAC). Из равенства треугольников следует равенство всех соответствующих элементов. BD = DC, так как они лежат против равных углов. Значит, AD является медианой. Также ∠3 = ∠4, поскольку они лежат против равных сторон. Но, к тому же, они в сумме равняются . Следовательно, ∠3 = ∠4 = . Значит, AD является высотой треугольника, что и требовалось доказать.

В единственном случае a = b = . В этом случае прямые АС и ВD называются перпендикулярными.

Поскольку биссектрисой, высотой и медианой является один и тот же отрезок, то справедливы и следующие утверждения:

Высота равнобедренного треугольника, проведенная к основанию, является медианой и биссектрисой.

Медиана равнобедренного треугольника, проведенная к основанию, является высотой и биссектрисой.

Пример 1: В равнобедренном треугольнике основание в два раза меньше боковой стороны, а периметр равен 50 см. Найдите стороны треугольника.

Дано: АВ = АС, ВС = AC. Р = 50 см.

Найти: ВС, АС, АВ.

Решение:

Рис. 5. Чертеж к примеру 1

Обозначим основание ВС как а, тогда АВ = АС = 2а.

2а + 2а + а = 50.

5а = 50, а = 10.

Ответ: ВС = 10 см, АС = АВ = 20 см.

Пример 2: Докажите, что в равностороннем треугольнике все углы равны.

Дано: АВ = ВС = СА.

Доказать: ∠А = ∠В = ∠С.

Доказательство:

Рис. 6. Чертеж к примеру

∠В = ∠С, так как АВ=АС, а ∠А = ∠В, так как АС = ВС.

Следовательно, ∠А = ∠В = ∠С, что и требовалось доказать.

Ответ: Доказано.

На сегодняшнем уроке мы рассмотрели равнобедренный треугольник, изучили его основные свойства. На следующем уроке мы порешаем задачи по теме равнобедренного треугольника, на вычисление площадт равнобедренного и равностороннего треугольника.

  1. Александров А.Д., Вернер А.Л., Рыжик В.И. и др. Геометрия 7. - М.: Просвещение.
  2. Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б. и др. Геометрия 7. 5-е изд. - М.: Просвещение.
  3. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.
  1. Словари и энциклопедии на «Академике» ().
  2. Фестиваль педагогической идеи «Открытый урок» ().
  3. Кaknauchit.ru ().

1. № 29. Бутузов В.Ф., Кадомцев С.Б., Прасолова В.В. Геометрия 7 / В.Ф. Бутузов, С.Б. Кадомцев, В.В. Прасолова, под ред. Садовничего В.А. - М.: Просвещение, 2010.

2. Периметр равнобедренного треугольника равен 35 см, а основа втрое меньше боковой стороны. Найдите стороны треугольника.

3. Дано: АВ = ВС. Докажите, что ∠1 = ∠2.

4. Периметр равнобедренного треугольника равен 20 см, одна из его сторон в два раза больше другой. Найдите стороны треугольника. Сколько решений имеет задача?