Клеточная теория была сформулирована. Клетка


Открытие и изучение клетки стало возможным благодаря изобретению микроскопа и усовершенствованию методов микроскопических исследований.

Англичанин Роберт Гук первым в 1665 г.с помощью увеличительных линз наблюдал деление тканей коры пробкового дуба на ячейки (клетки). Хотя выснилось, что открыл он не клетки (в собственном понятии термина), а лишь внешние оболочки растительных клеток. Позже мир одноклеточных организмов был открыт А. Левенгуком. Он первый увидел животные клетки (эритроциты). Позже клетки животных описал Ф. Фонтана,но эти исследования в то время не привели к понятию универсальности клеточного строения, потому что не было чётких представлений о том, что же такое клетка.

Р. Гук считал, что клетки – это пустоты или поры между волокнами растений. Позже М. Мальпиги, Н. Грю и Ф. Фонтана, наблюдая растительные объекты под микроскопом, подтвердили данные Р. Гука, назвав клетки «пузырьками». Значительный вклад в развитие микроскопических исследований растительных и животных организмов сделал А. Левенгук. Данные своих наблюдений он опубликовал в книге «Тайны природы».

Иллюстрации к этой книге чётко демонстрируют клеточные структуры растительных и животных организмов. Однако А.Левенгук не представлял описанные морфологические структуры как клеточные образования. Его исследования имели случайный, не систематизированный характер. Г.Линк, Г. Травенариус и К. Рудольф в начале $XIX$ столетия своими исследованиями показали, что клетки – это не пустоты, а самостоятельные ограниченные стенками образования. Было установлено, что клетки имеют содержимое, которое Я Пуркинье назвал протоплазмой. Р. Броун описал ядро, как постоянную часть клеток.

Т. Шванн проанализировал данные литературы о клеточном строении растений и животных, сопоставив их с собственными исследованиями и опубликовал результаты в своей работе. В ней Т. Шванн показал, что клетки являются элементарными живыми структурными единицами растительных и животных организмов. Они имеют общий план строения и образуются единым путём. Эти тезисы и стали основой клеточной теории.

Исследователи длительное время занимались накоплением наблюдений за строением одноклеточных и многоклеточных организмов, прежде, чем сформулировать положения КТ. Именно в этот период были более развиты и усовершенствования различные оптические методы исследования.

Клетки делят на ядерные (эукариотические) и безъядерные (прокариотические). Животные организмы построены из эукариотических клеток. Лишь красные клетки крови млекопитающих (эритроциты) не имеют ядер. Они теряют их в процессе своего развития.

Определение клетки изменялось в зависимости от познания их строения и функции.

Определение 1

По современным данным, клетка – это ограниченная активной оболочкой, структурно упорядоченная система биополимеров, которые образуют ядро и цитоплазму, участвуют в единой совокупности процессов метаболизма и обеспечивают поддержание и воспроизведение системы в целом.

Клеточная теория является обобщённым представлением о строении клетки как единицы живого, о размножении клеток и их роли в формировании многоклеточных организмов.

Прогресс в изучении клетки связан с развитием микроскопии в $XIX$ веке. В то время представление о строении клетки изменилось: за основу клетки принималась не клеточная оболочка, а её содержимое – протоплазма. Тогда же открыли ядро как постоянный элемент клетки.

Сведения о тонком строении и развитии тканей и клеток давали возможность сделать обобщение. Такое обобщение сделал в 1839 г. немецкий биолог Т. Шванн в виде сформулированной им клеточной теории. Он утверждал, что клетки и животных, и растений принципиально похожи. Развил и обобщил эти представления немецкий патолог Р. Вирхов. Он выдвинул важное положение, которое состояло в том, что клетки возникают только из клеток путём размножения.

Основные положения клеточной теории

Т. Шванн в 1839 г. в своей работе «Микроскопические исследования о соответствии в строении и произрастании животных и растений» сформулировал основные положения клеточной теории (позже они не раз уточнялись и дополнялись.

Клеточная теория содержит такие положения:

  • клетка – основная элементарная единица строения, развития и функционирования всех живых организмов, мельчайшая единица живого;
  • клетки всех организмов гомологичны (подобные) (гомологичны)по своему химическому строению, основным проявлениям жизненных процессов и обмену веществ;
  • размножаются клетки путём деления - новая клетка образуется в результате деления изначальной (материнской) клетки;
  • у сложных многоклеточных организмов клетки специализируются по функциям, которые они выполняют, и образуют ткани; из тканей построены органы, тесно взаимосвязанные межклеточными, гуморальными и нервными формами регуляции.

Интенсивное развитие цитологии в $XIX$ и $XX$ столетиях подтвердило основные положения КТ и обогатило её новыми данными о строении и функциях клетки. В этот период было отброшено отдельные неправильные тезисы клеточной теории Т. Шванна, а именно, что отдельная клетка многоклеточного организма может функционировать самостоятельно, что многоклеточный организм является простой совокупностью клеток, а развитие клетки происходит из неклеточной «бластемы».

В современном виде клеточная теория включает такие основные положения:

  1. Клетка – это наименьшая единица живого, которой присущи все свойства, которые отвечают определению «живого». Это обмен веществ и энергии, движение, рост, раздражительность, адаптация, изменчивость, репродукция, старение и смерть.
  2. Клетки различных организмов имеют общий план строения, который обусловлен подобностью общих функций, направленных на поддержание жизни собственно клеток и их размножение. Разнообразие форм клеток является результатом специфичности выполняемых ими функцуий.
  3. Размножаются клетки в результате деления исходной клетки с предыдущим воспроизведением её генетического материала.
  4. Клетки являются частями целостного организма, их развитие, особенности строения и функции зависят от всего организма, что является последствием взаимодействия в функциональных системах тканей, органов, аппаратов и систем органов.

Замечание 1

Клеточная теория, которая соответствует современному уровню знаний в биологии, по многим положениям кардинально отличается от представлений о клетке не только начала ХІХ века, когда Т. Шванн сформулировал её впервые, но даже средины ХХ века. В наше время это – система научных взглядов, которая приобрела вид теорий, законов и принципов.

Основные положения КТ сохранили своё значение и до сегодняшнего дня, хотя более чем за 150 лет было получено новые сведения о структуре, жизнедеятельности и развитии клеток.

Значение клеточной теории

Значение клеточной теории в развитии науки состоит в том, что благодаря ей стало понятно, что клетка является важнейшей составляющей частью всех организмов, их главным «строительным» компонентом. Так как развитие каждого организма начинается с одной клетки (зиготы), то клетка является и эмбриональной основой многоклеточных организмов.

Создание клеточной теории стало, одним из решающих доказательств единства всей живой природы, важнейшим событием биологической науки.

Клеточная теория способствовала развитию эмбриологии, гистологии и физиологии. Она дала основу для материалистического понятия жизни, для объяснения эволюционной взаимосвязи организмов, для понятия сущности онтогенеза.

Основные положения КТ актуальны и сегодня, хотя за период более чем 100 лет естествоиспытатели получили новые сведения о строении, развитии и жизнедеятельности клетки.

Клетка является основой всех процессов в организме: и биохимических, и физиологических, поскольку именно на клеточном уровне происходят все эти процессы. Благодаря клеточной теории возможным стало прийти к заключению о подобности в химическом составе всех клеток и ещё раз убедиться в единстве всего органического мира.

Клеточная теория – одно и важнейших биологических обобщений, согласно которому все организмы имеют клеточное строение.

Замечание 2

Клеточная теория совместно с законом превращения энергии и эволюционной теорией Ч. Дарвина является одним из трёх величайших открытий естествознания $XIX$ века.

Клеточная теория кардинально повлияла на развитие биологии. Она доказала единство живой природы и показала структурную единицу этого единства, которой является клетка.

Создание клеточной теории стало важнейшим событием в биологии, одним из решающих доказательств единства всей живой природы. Клеточная теория имела значительное и решающее влияние на развитие биологии, служила главным фундаментом для развития таких дисциплин, как эмбриология, гистология и физиология. Она дала основание для объяснения родственных взаимосвязей организмов, для понятия механизма индивидуального развития.

Клеточная теория, возможно, является важнейшим обобщением современной биологии и представляет собой систему принципов и положений. Она является научной подоплекой для многих биологических дисциплин, которые изучают вопросы строения и жизнедеятельности живых существ. Клеточная теория раскрывает механизмы роста, развития и размножения организмов.

Клетки открыты в 1665 г. Р. Гуком. Клеточная теория, одно из величайших открытий 19-го века, была сформулирована в 1838 г. немецкими учёными М. Шлейденом и Т. Шванном, а в дальнейшем развита и дополнена Р. Вирховым. Клеточная теория включает в себя следующие положения:

1.Клетка является наименьшей единицей живого.

2.Клетки разных организмов имеют сходное строение, что свидетельствует о единстве живой природы.

3.Размножение клеток происходит путём деления исходной, материнской клетки (постулат: каждая клетка - из клетки).

4.Многоклеточные организмы состоят из сложных ансамблей клеток и их производных, объединённых в системы тканей и органов, а последние - в целостный организм с помощью нервных, гуморальных и иммун­ных механизмов регуляции.

Клеточная теория объединила представления о клетке как наименьшей структурной, генетической и функциональной единице животных и растительных организмов. Она вооружила биологию и медицину пониманием общих закономерностей строения живого.

Меры длины, применяемые в цитологии

1 мкм (микрометр) – 10 –3 мм (10 –6 м)

1 нм (нанометр) – 10 –3 η (10 –9 м)

1 A (амстрем) – 0,1 нм (10 –10 м)

Общая организация животных клеток

Все клетки организма человека и животных имеют общий план строения. Они состоят из цитоплазмы и ядра и отделены от окружающей среды клеточной оболочкой.

Организм человека состоит примерно из 10 13 клеток, подразделяющихся более чем на 200 типов. В зависимости от своей функциональной специализации, различные клетки организма могут значительно отличаться по своей форме, величине и внутреннему устройству. В организме человека встречаются круглые (клетки крови), плоские, кубические, призматические (эпителиальные), веретеновидные (мышечные), отростчатые (нервные) клетки. Их размеры колеблются от 4-5 мкм (клетки-зёрна мозжечка и малые лимфоциты) до 250 мкм (яйцеклетка). Отростки некоторых нервных клеток имеют длину более 1 метра (у нейронов спинного мозга, отростки которых идут до кончиков пальцев конечностей). При этом форма, величина и внутреннее строение клеток всегда наилучшим образом соответствуют выполняемым ими функциям.

Структурные компоненты клетки

Цитоплазма – часть клетки, отделённая от окружающей среды клеточной оболочкой и включающая в себя гиалоплазму , органеллы и включения .

Все мембраны в клетках имеют общий план строения, который обобщён в понятии универсальная биологическая мембрана (рис. 2- 1А).

Универсальная биологическая мембрана образована двойным слоем молекул фосфолипидов общей толщиной 6 мкм. При этом гидрофобные хвосты молекул фосфолипидов обращены внутрь, навстречу друг другу, а полярные гидрофильные головки обращены наружу мембраны, навстречу воде. Липиды обеспечивают основные физико-химические свойства мембран, в частности, их текучесть при температуре тела. В этот двойной слой липидов встроены белки. Их подразделяют на интегральные (пронизывают весь бислой липидов), полуинтегральные (проникают до половины ли­пидного бислоя), или поверностные (располагаются на внутренней или наружной поверхности липидного бислоя).

Рис. 2-1. Строение биологической мембраны (А) и клеточ­ной оболочки (Б).

1. Молекула липида.

2. Бислой липидов.

3. Интегральные белки.

4. Полуинтегральные белки.

5. Периферические белки.

6. Гликокаликс.

7. Подмембранный слой.

8. Микрофиламенты.

9. Микротрубочки.

10. Микрофибриллы.

11. Молекулы гликопротеинов и гликолипидов.

(По О. В. Волковой, Ю. К. Елецкому).

При этом белковые молекулы располагаются в липидном бислое мозаично и могут «плавать» в «липидном море» наподобие айсбергов, благодаря текучести мембран. По своей функции эти белки могут быть структурными (поддерживать определённую структуру мембраны), рецепторными (образовывать рецепторы биологически активных веществ), транспортными (осуществляют транспорт веществ через мембрану) и ферментными (катализируют определённые химические реакции). Эта наиболее признанная в настоящее время жидкостно-мозаичная модель биологической мембраны была предложена в 1972 г. Singer и Nikolson.

Мембраны выполняют в клетке разграничительную функцию. Они разделяют клетку на отсеки, компартменты, в которых процессы и химические реакции могут идти независимо друг от друга. Например, агрессивные гидролитические ферменты лизосом, способные расщеплять большинство органических молекул, отделены от остальной цитоплазмы с помощью мемраны. В случае её разрушения происходит самопереваривание и гибель клетки.

Имея общий план строения, разные биологические мембраны клетки различаются по своему химическому составу, организации и свойствам, в зависимости от функций структур, которые они образуют.

Клеточная теория - одно из наиболее важных биологических обобщений, согласно которому все орга­низмы имеют клеточное строение. Клеточное строение впервые наблюдал Р.Гук (1665 г.) у растений.

Н.Грю (1682 г.) полагал, что стенки клеток образованы переплетением волокон, как у текстиля (ткани).

Ядро в растительной клетке описал Р.Броун (1831 г.), но только М.Шлейден в 1838 г. сделал первые шаги к раскрытию и пониманию его роли.

Основная заслуга оформления клеточной теории принадлежит Т.Шванну (1839 г.), который использовал собственные данные и результаты Шлейдена, Я.Пуркине и других ученых. Сопоставив тканевые структуры животных и растений , он указал на общий для них принцип клеточ­ного строения и роста. Однако Шванн, как и Шлейден, считал, что.главная роль в клетке принадл ежит оболочке и ядру. Они создали так называемую клеточную теорию. Сущность ее заключалась в окончательном признании того факта, что все организмы, как растительные, так и живот­ные, начиная с низших и кончая самыми высокоорганизо­ванными, состоят из клеток.

В 1839 г. Т.Шванн сформулировал основные положе­ния клеточной теории:

1. Все организмы состоят из одинаковых частей - клеток; они образуются и растут по одним и тем же законам.

2. Общий принцип развития для элементарных частей организма - клеткообразование.

3. Каждая клетка в определенных границах есть индивиду­ум, некое самостоятельное целое. Но эти клетки обра­зуют ткани .

4. Процессы, возникающие в клетках растений, могут быть сведены к следующему:

а) возникновение новых клеток;

б) увеличение в размерах клеток;

в) утолщение клеточной стенки.

М.Шлейден и Т.Шванн ошибочно считали, что клетки в организме возникают путем новообразования из первич­ного неклеточного вещества. Это представление было оп­ровергнуто выдающимся немецким ученым Р.Вирховым.

Он сформулировал (1859 г.) одно из важнейших положений клеточной теории: «Всякая клетка происходит из другой клетки... Там, где возникает клетка, ей должна предшест­вовать клетка, подобно тому, как животное происходит только от животного, растение - только от растения». Благодаря созданию клеточной теории стало понятно, что клетка - это важнейшая составляющая часть всех живых организмов. Однако надо помнить, что жизнь простейшего одноклеточного организма богаче и разнообразнее самой сложной и относительно самостоятельной клетки много­клеточного организма.

М. Мальпиги и Н. Грю сформулировали первую пенисто-ячеистую клеточную теорию: как пена состоит из пузырьков, так и ткань состоит из пузырьков-клеток. Клетка рассматривалась как элемент, как составная часть ткани. Клетки разделены между собой общими перегородками и поэтому не могут быть мыслимы вне ткани, вне организма.

Академик Российской Академии наук Каспар Фридрих Вольф (1759), изучая рост растений, установил, что клетка есть единица роста , то есть рост организмов сводится к образованию новых клеток. К. Ф. Вольф был убежден в невозможности существования клеток вне ткани, однако в зрелых плодах он наблюдал отдельные клетки, не имеющие общей перегородки. Система взглядов К. Ф. Вольфа может считаться первой стройной клеточной теорией, однако эта теория не носила универсального характера. К. Ф. Вольф не рассматривал клеточную теорию применительно к животным клеткам: «Этот вопрос обойден молчанием, ибо он не представляет никаких трудностей». В то же время К. Ф. Вольф считал проблему образования клеточной ткани у животных «столь же важной, сколь и темной».

Немецкий естествоиспытатель Лоренц Окен (1809) на основе натурфилософских рассуждений пришел к выводу, что клетки одноклеточных и многоклеточных организмов гомологичны: «Первичный пузырек слизи в философском смысле может быть назван инфузорией... Растения и животные могут быть только лишь метаморфозами инфузорий... Организм представляет собою синтез инфузорий».

В начале XIX века немецкие ботаники Г. Линк, К. Рудольфи, Л. Тревиранус, И. Молденгауер доказали, что каждая растительная клетка является самостоятельной структурой («коробочкой»), покрытой непрерывной оболочкой . Немецкий ботаник Франц Мейен (1830) предсказал существование клеточных мембран: «клетка есть пространство, отграниченное вполне замкнутое мембраной».

Клетки многоклеточных животных до начала XIX в. практически не изучались. Известны лишь отдельные наблюдения клеток эпидермиса кожи угря и эритроцитов (Феликс Фонтана, 1781-1787). Только в начале XIX века в связи с развитием микроскопической техники и химии появилась возможность разнообразных способов подготовки микроскопических препаратов: фиксация, мацерация, дифференциальное окрашивание. Начинается интенсивное изучение клеток животных.

До начала XIX в. считалось, что в состав тканей входят не только клетки, но и неклеточные структуры – волокна и сосуды – происхождение которых не связывалось с деятельностью клеток. На основании подобных взглядов была создана теория сосудисто-волокнистого строения организмов, которую разработал швейцарский физиолог Альбрехт фон Галлер в 1757-1766 гг. и дополнил немецкий ботаник Франц Мейен в 1830 г.

В 1830-е гг. чешский гистолог Ян Пуркинье, немецкий физиолог Иоганнес Мюллер и другие исследователи показали, что клеточная организация является универсальной и для животных тканей , а немецкий физиолог Теодор Шванн доказал гомологичность растительных и животных клеток . В своих работах Т. Шванн широко использовал термин cytos (от греч. «полость») и его производные.

Изучая структуру хряща и хорды, Т. Шванн показал, что коллагеновые волокна являются производными клеток.

Независимо друг от друга сущность клеточной теории изложили в своих работах М. Шлейден «Данные о развитии растений» (1838) и Т. Шванн «Микроскопические исследования о соответствии в структуре и росте животных и растений» (1839):

1. Клетка является главной структурной единицей всех растительных и животных организмов.

2. Процесс образования клеток обусловливает рост (развитие и дифференцировку) растительных и животных тканей.

3. Клетка в определенных границах есть индивидуум, некое самостоятельное целое, а организм – своеобразная их сумма.

4. Новые клетки возникают из цитобластомы.

Первые два вывода сохраняют актуальность и сегодня.

Проблема возникновения новых клеток была решена спустя два десятилетия благодаря накопленному теоретическому и фактическому материалу.

В XVIII в. Л. Спалланцани впервые наблюдал деление одноклеточных организмов (инфузорий).

Однако проблему образования новых клеток впервые сформулировал Каспар Фридрих Вольф (его диссертация называлась «Теория зарождения» – Theoria generationis, 1759). По мнению К. Ф. Вольфа, клетки растений образуются из студневидной гомогенной массы в ходе органогенеза.

Впервые деление клеток (дробление яиц лягушки) наблюдали французские ученые Прево и Дюма (1824). Более подробно этот процесс описал итальянский эмбриолог М. Рускони (1826). Процесс деления ядер при дроблении яиц у морских ежей описал К. Бэр (1845). Первое описание деления клеток у водорослей выполнил Б. Дюмортье (1832).

Однако Т. Шванн и М. Шлейден считали, что клетки образуются в ходе цитогенеза из зернышек–цитобластов, которые могут зарождаться в самих клетках (М. Шлейден) и вне клеток (Т. Шванн).

Русский ботаник Павел Федорович Горянинов («Система природы», 1837) экспериментально установил, что цитогенез был возможен только в эволюционном прошлом, а в настоящее время клетки возникают или путем деления, или путем почкования, или путем слияния.

Окончательный ответ на вопрос о возникновении новых клеток дал Рудольф Вирхов (ученик И. Мюллера). В работе «Целлюлярная патология...» (1858) он изложил основные положения собственной клеточной теории:

1. Клетка есть последний морфологический элемент, способный к жизнедеятельности.

2. Любая клетка происходит только от клетки: Omnis cellula ex cellule – каждая клетка от клетки.

3. Организм есть федерация клеточных государств.

Р. Вирхов показал связь патологических процессов с морфологическими структурами, с определенными изменениями в строении клеток - болезнь всего организма определяется болезнью клетки; и выскзал предположение, что вне клеток нет жизни.

Вирхов Р. также рассматривал организм как сумму составляющих его клеток, что критиковали И. М. Сеченов, С. П. Боткин и И. П. Павлов. Они показали, что многоклеточный организм – это единое целое и деятельность организмы, как и интеграция его частей, осуществляются, прежде всего, центральной нервной системой.

Клеточная теория Шванна–Шлейдена–Вирхова постоянно развивалась.

Макс Шультце (1861) дал морфологическое определение клетки: клетка – комочек протоплазмы, внутри которого лежит ядро. Этим определением он попытался решить проблему неклеточных структур, например, волокон поперечно-полосатых мышц, которые образуются путем слияния одноядерных миобластов (эмбриональных мышечных клеток): при этом индивидуальные оболочки (мембраны) утрачиваются, но каждое ядро сохраняет окружающую его саркоплазму (эндоплазму с органоидами). Таким образом, М. Шультце подчеркивал сохранение индивидуальности клеток даже при их слиянии.

Немецкий зоолог-эволюционист Эрнст Геккель создал теорию происхождения многоклеточных организмов путем дифференциации клеток колоний одноклеточных организмов (теория гастреи). При этом возможно слияние отдельных клеток с образованием синцития («соклетия»). Таким образом, Э. Геккель заложил основы эволюционной цитологии.

Развитие науки подтвердило положение теории Р. Вирхова «каждая клетка – от клетки»: новые клетки эукариот могут образовываться только путем митоза или мейоза. Отдельные фазы митоза наблюдали: немецкий ботаник В. Гофмейстер (1849; клетки тычиночной нити традесканции), российские ботаники Э. Руссов (1872; материнские клетки спор папоротников, хвощей, лилии) и И.Д. Чистяков (1874; споры хвоща и плауна), немецкий зоолог А. Шнейдер (1873; дробящиеся яйца плоских червей), польский ботаник Э. Страсбургер (1875; спирогира, плаун, лук). Для обозначения процессов перемещения составных частей ядра немецкий гистолог В. Шлейхнер предложил термин кариокинез (1879), а немецкий гистолог В. Флемминг ввел термин митоз (1878). В 1880-е гг. Общая морфология хромосом была описана еще в работах Гофмейстера, однако лишь в 1888 г. немецкий гистолог В. Вальдейер ввел термин хромосома. Ведущая роль хромосом в хранении, воспроизведении и передаче наследственной информации была доказана лишь в ХХ веке.

Отдельные фазы мейоза у животных описал В. Флемминг (1882), а у растений – Э. Страсбургер (1888), а затем российский ученый В.И. Беляев. В это же время (1887) А. Вайсман теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Первое подробное описание мейоза в ооцитах кролика дал Уиниуортер (1900).

В конце XIX в. окончательно формируются представления о клеточном уровне организации жизни. Понятие «клетка» отделяется от понятия ткани, органа, организма. Возникает особый раздел биологии – биология клетки (Жан Батист Карнуа, 1884).

Ганс Дриш (1891) пришел к выводу, что организм не равен сумме клеток. Клетка – не элементарный организм, а элементарная биологическая система. Такое представление о клетке дало возможность изучать некую обобщенную клетку, абстрагируясь от свойств клеток как элементов тканей. Цитология окончательно оформляется как самостоятельная наука.

Современный этап в развитии цитологии начался в середине XX века в связи с развитием электронной микроскопии, а также биохимических, биофизических методов исследований и развитием общебиологических наук (синтетическая теория эволюции, молекулярная генетика, популяционная биология, биологическая статистика и др.), что позволило подтвердить, уточнить и дополнить клеточную теорию:

Все живые организмы состоят из клеток (за исключением вирусов);

Клетки одноклеточных и многоклеточных организмов сходны (гомологичны) по строению, химическому составу, принципам обмена веществ и основным проявлениям жизнедеятельности;

Именно клетка обладает всей совокупностью черт, характеризующих живое;

Все живые организма развиваются из одной или из группы клеток;

Каждая клетка образуется в результате деления исходной (материнской) клетки;

В сложных многоклеточных организмах клетки дифференцируются, специализируясь по выполнению определенной функции;

Клетки объединены в ткани и органы, функционально связанные системы и находятся под контролем межклеточных, гуморальных и нервных форм регуляции.

Основные положения современной клеточной теории:

1. Клетка – элементарная единица живого, способная к самообновлению, саморегуляции и самовоспроизведению; является единицей строения, функционирования и развития всех живых организмов.

2. Клетки всех живых организмов сходны по строению, химическому составу и основным проявлениям жизнедеятельности.

3. Клетки образуются путём деления исходной (материнской) клетки.

4. В многоклеточной организме клетки специализируются по функциям и образуют ткани, из которых построены органы и системы органов, связанные между собой межклеточными, гуморальными и нервными формами регуляции.

Таким образом, создание клеточной теории стало важнейшим событием в естествознании, одним из решающих доказательств единства живой природы. Клеточная теория оказала значительное влияние на развитие биологии и послужила фундаментом для дальнейшего развития многих биологических дисциплин – эмбриологии, гистологии, физиологии и др. «Только со времени этого открытия стало на твердую почву исследование органических, живых продуктов природы – как сравнительная анатомия и физиология, так и эмбриология. Покров тайны, окутывавший процесс возникновения и роста и структуру организмов, был сорван. Непостижимое чудо предстало в виде процесса, происходящего согласно тождественному для всех многоклеточных организмов закону» Ф. Энгельс.

Строение клетки.

Если клетки бактерий и других прокариот устроены сравнительно просто и несут ряд примитивных черт, унаследованных от первых живых организмов на Земле, то эукариотические клетки - от простейших (протист) до клеток высших растений и млекопитающих – отличаются и сложностью и разнообразием структуры.

Клетки тканей растений, грибов и животных в зависимости от выполняемых ими функций имеют не только разные размеры, но и различную форму. Диметр большинства клеток эукариот составляет 10-100 мкм, самые мелкие клетки имеют размеры около 4 мкм, у некоторых 1-10 мм (клетки мякоти арбуза), а самые крупные (яйцеклетки страусов, пингвинов, гусей) 10-20см, иногда и больше (отростки нервных клеток могут достигать 1 метра). По форме можно выделить клетки: округлые, многоугольные, палочковидные, звездчатые (нервные), дисковидные (эритроциты), цилиндрические, кубические и др.

Несмотря на многообразие форм, все клетки имеют общий принцип строения (рис….). Любая клетка состоит из трех частей: поверхностного аппарата (плазмалеммы), цитоплазмы и ядерного аппарата (ядра).

Поверхностный аппарат образован цитоплазматической мембраной, надмембранным и субмембранным комплексами. Поверхностный аппарат ограничивает внутреннее содержимое клеток и защищает его от влияния окружающей среды, осуществляет обмен веществ между клеткой и внешней средой. Надмембранный комплекс растений грибов и многих протист представлен плотной клеточной стенкой. Клетки животных ограничены только цитоплазматической мембраной. Субмембранный комплекс лежит под цитоплазматической мембраной и образован белковыми нитями и микротрубочками.

Цитоплазма это часть клетки, расположенная между плазматической мембраной и ядром. В цитоплазме выделяют основное (полужидкое вещество), или гиалоплазму и погруженные в неё все внутриклеточные структуры: цитоскелет, органоиды и включения. Гиалоплазма – внутрення среда клетки; состоит из воды органических и неорганических веществ. Цитоскелет – система микротрубочек и микрофиламентов (микронитей) ; выполняет опорную функцию и обеспечивает внутриклеточные движения.

Органоиды – постоянные внутриклеточные структуры цитоплазмы , выполняющие определенные функции и обеспечивающие процессы жизнедеятельности клетки (питание, синтез веществ, транспорт веществ внутри клетки и за её пределы и др.). Мембранные органоиды подразделяют на одномембранные (эндоплазматический ретикулум, комплекс Гольджи, лизосомы, вакуоли) и двумембранные (митохондрии, пластиды) и немембранным (рибосомы, клеточный центр, реснички, жгутики).

Включения – непостоянные образования. Появляются в процессе жизнедеятельности, исчезают, вновь образуются. В основном представляют собой запасные вещества клетки или конечные продукты обмена в виде капель (жир), гранул (крахмал, гликоген) или кристаллов (соли).

Рис. Комбинированная схема строения эукариотической клетки. (А - животного происхождения, Б - растительного происхождения):

1-ядро с хроматином, 2-плазматическая мембрана, 3-клеточная оболочка, 4-плазмодесмы, 5-гранулярная эндоплазматическая сеть, 6-агранулярная эндоплазматическая сеть, 7-образующиеся пиноцитозные вакуоли, 8-комплекс Гольджи, 9-лизосома, 10-жировые включения, 11-центриоль и микротрубочки, 12-митохондрии, 13-полирибосомы, 14-вакуоли, 15-хлоропласты.

Ядро важнейший структурный компонент клеток, содержащий ДНК. Ядро обеспечивает хранение, реализацию и передачу наследственной информации дочерним клеткам .

Цитоплазма и ядро в совокупности образуют живое содержимое клетки – протопласт.

Строение эукариотической клетки

Структура Особенности организации Функции
Поверхностный аппарат: Цитоплазматическая мембрана Надмембранный комплекс Субмембранный комплекс Тончайшая пленка, образованная бислоем липидов и погруженными в него белками Избирательная регуляция обмена веществ между клеткой и внешней средой. Обеспечение контакта между соседними клетками.
Многослойное образование из полисахаридов Защита клетки и внешний каркас
Микротрубочки и микрофиламенты, образованные белковыми субъединицами Связь между мембраной, цитоскелетом и гиалоплазмой
Цитоплазма: Гиалоплазма Митохондрии Пластиды Эндоплазматический ретикулум (ЭПР, ЭР) Комплекс Гольджи (КГ) Лизосомы Вакуоли Рибосомы Коллоидный раствор белков, углеводов и других веществ Внутренняя среда клетки, связь между всеми клеточными структурами, синтез многих веществ.
Двухмембранная структура; внутренняя мембрана образует кристы. Содержит кольцевую молекулу ДНК, рибосомы, множество ферментов. Синтез АТФ
Двухмембранная структура. Внутренняя мембрана образует тилакоиды, которы у хлоропластов содержат хлорофилл. Содержат кольцевую ДНК, рибосомы, множество ферментов. Характерны только для клеток растений, автотрофных и гетеротрофных протистов. Фотосинтез, запасание питательных веществ.
Система уплощенных мембранных мешочков – цистерн, полостей, трубочек На шероховатом ЭПР расположены рибосомы. В его цистернах изолируется и дозревают синтезированные белки. Транспорт синтезированных белков. Гладкий ЭПР: синтез углеводов, липидов, стероидов. Деградация вредных веществ.
Система плоских одномембранных цистерн, расширенных на концах, и пузырьков, отделяющихся или присоединяющихся к цистернам. Накопление, преобразование белков и липидов, синтез полисахаридов. Образование секреторных пузырьков, выделение веществ за пределы клетки. Образование лизосом.
Одномембранные пузырьки, содержащие гидролитические ферменты Внутриклеточное переваривание, расщепление поврежденных органелл, отмерших клеток, органов.
Одномембранные цистерны, заполненные водой с растворенными в ней веществами. Запасание воды и других неорганических и органических веществ, осморегуляция.
Две субъединицы (большая и малая), состоящие из рРНК и белков Сборка белковых молекул
Клеточный центр (центриоли) Микротрубочки, микрофиламенты Включения Система микротрубочек, построенных из белковых субъединиц Центры организации микротрубочек (участвуют в образовании цитоскелета и веретена деления клетки, ресничек и жгутиков)
Трубочки и нити, образованные белковыми субъединицами Образование цитоскелета, центриолей, жгутиков, ресничек и др. Сократительные движения, внутриклеточный транспорт
Жировые капли, гранулы (крахмал, гликоген, белок), кристаллы (щавелевокислый кальций) Запасные вещества клетки, конечные продукты обмена
Ядерный аппарат (ядро) Имеет двухмембранную оболочку, хроматин, ядерный матрикс, ядрышко, содержит ДНК Хранение и передача дочерним клеткам наследственной информации в неизменном виде. Реализация наследственной информации

Российскому физиологу Ивану Павлову принадлежит сравнение науки со стройкой, где знания, как кирпичики, создают фундамент системы. Так и клеточную теорию с ее основателями - Шлейденом и Шванном - разделяют множество натуралистов и ученых, их последователей. Один из творцов теории клеточного строения организмов Р. Вирхов однажды сказал: «Шванн стоял на плечах Шлейдена». Именно о совместном труде этих двух учёных и пойдёт речь в статье. О клеточной теории Шлейдена и Шванна.

Матиас Якоб Шлейден

В возрасте двадцати шести лет юный юрист Матиас Шлейден (1804-1881) решил изменить свою жизнь, чем совсем не порадовал семью. Бросив адвокатскую практику, он переводится на медицинский факультет Гейдельбергского университета. А уже в 35 лет становится профессором кафедры ботаники и физиологии растений Йенского университета. Свою задачу Шлейден видел в разгадке механизма размножения клеток. В своих работах он верно выделил главенство ядра в процессах размножения, но не видел сходства в строении клеток растений и животных.

В статье «К вопросу о растениях» (1844) он доказывает общность в строении всех независимо от места их расположения. Рецензию к его статье пишет немецкий физиолог Иоганн Мюллер, ассистентом которого в тот период был Теодор Шванн.

Несостоявшийся священник

Теодор Шванн (1810-1882) учился на философском факультете Боннского университета, так как считал именно это направление наиболее близким к своей мечте - стать священником. Однако интерес к естествознанию был настолько силен, что окончил Теодор университет уже на факультете медицинском. упомянутого И. Мюллера, за пять лет он совершил открытий столько, что хватило бы на нескольких ученых. Это и обнаружение в желудочном соке пепсина, и оболочки нервных волокон. Именно он доказал непосредственное участие дрожжевых грибов в процессе брожения.

Соратники

Научное сообщество тогдашней Германии не было слишком большим. Поэтому встреча немецких ученых Шлейдена и Шванна была предрешена. Состоялась она в кафе в один из обеденных перерывов, в 1838 году. Будущие соратники обсуждали свои работы. Матиас Шлейден с Теодором Шванном поделился своей находкой распознавания клеток по ядрам. Повторив опыты Шлейдена, Шванн изучает клетки животного происхождения. Они много общаются и становятся друзьями. И уже через год появляется совместный труд «Микроскопические исследования о сходстве в строении и развитии элементарных единиц животного и растительного происхождения», который и сделал Шлейдена и Шванна основателями учения о клетке, ее строении и жизнедеятельности.

Теория о клеточном строении

Главный постулат, который отражали работы Шванна и Шлейдена,- это то, что жизнь находится в клетке всех живых организмов. Работы еще одного немца - патологоанатома Рудольфа Вирхова - в 1858 году окончательно вносят ясность в Именно он дополнил работы Шлейдена и Шванна новым постулатом. «Всякая клетка от клетки»,- поставил он точку в вопросах самозарождения жизни. многие считают соавтором, и некоторые источники употребляют высказывание "клеточная теория Шванна, Шлейдена и Вирхова".

Современное учение о клетке

Сто восемьдесят лет, прошедшие с того момента, добавили экспериментальных и теоретических знаний о живых существах, но основой так и осталась клеточная теория Шлейдена и Шванна, основные постулаты которой следующие:


Точка бифуркации

Теория немецких ученых Матиаса Шлейдена и Теодора Шванна стала переломным моментом в развитии науки. Все отрасли знаний - гистология, цитология, молекулярная биология, анатомия патологий, физиология, биохимия, эмбриология, эволюционное учение и многие другие - получили мощный толчок в развитии. Теория, дающая новое понимание во взаимодействиях внутри живой системы, открыла новые горизонты для ученых, которые тут же ими воспользовались. Россиянин И. Чистяков (1874) и польско-немецкий биолог Э. Страсбургер (1875) раскрывают механизм митотического (бесполого) деления клеток. Следуют открытие хромосом в ядре и их роли в наследственности и изменчивости организмов, расшифровка процесса репликации и трансляции ДНК и ее роли в биосинтезе белка, энергетического и пластического обмена в рибосомах, гаметогенеза и образования зиготы.

Все эти открытия кирпичиками входят в здание науки о клетке как структурной единице и основе всего живого на планете Земля. Отрасли знаний, фундамент которой был заложен открытиями друзей и соратников, каковыми были немецкие ученые Шлейден и Шванн. Сегодня на вооружении биологов электронные микроскопы с разрешаемостью в десятки и сотни раз и сложнейший инструментарий, методы радиационного маркирования и изотопного облучения, технологии генного моделирования и искусственная эмбриология, но клетка все еще остается самой загадочной структурой жизни. Все новые и новые открытия о ее структуре и жизнедеятельности приближают научный мир к крыше этого здания, но никто не предскажет, закончится ли его строительство и когда. А пока здание не достроено, и все мы ждём новых открытий.